

CHK-336, a First-in-Class Orally Administered LDH Inhibitor: Safety, PK and Target Engagement in a First-in-Human Phase 1 Healthy Volunteer Study

<u>Vincent Tong</u>¹, Brian Schwartz¹, Chun Lam¹, John Knight², Sonia Fargue², David Wagner³, Brad Wong⁴, Harvey Wong⁵, Lei Wang¹, Hetal Kocinsky¹, Valerie Fauvelle¹, Andrew King¹

1 Chinook Therapeutics, Seattle, WA, United States of America; 2 University of Alabama at Birmingham, Department of Urology, Birmingham, AL, United States of America; 3 Metabolic Solutions Inc., Nashua, NH, United States of America; 4 Wong DMPK Consulting LLC, Redwood City, CA, United States of America; 5 The University of British Columbia, Vancouver, BC, Canada

Disclosures for Presenting Author

Current Employer:

Chinook Therapeutics

CHK-336 is an investigational agent and has not been approved for any uses in patients

Primary Hyperoxaluria (PH)

Rare genetic disorder of hepatic oxalate overproduction and potential end stage renal disease (ESRD)

Pathogenesis of Primary Hyperoxaluria

- Impaired hepatic glyoxylate detoxification \rightarrow excess oxalate that can accumulate in liver, kidneys, bone, heart, and other tissues
- Calcium oxalate crystals form in the kidneys \rightarrow kidney stones and CKD
- Progressive liver and kidney failure \rightarrow dual liver/kidney transplant

1 conversion of glyoxylate to oxalate (via LDHA)

CHK-336 is in development for PH

Novel Use of a PD Marker to Enable Proof of Mechanism in HVs

¹³C₂-glycolate tracer was required to demonstrate hepatic LDH inhibition in the FIH study

• Overall contribution of glycolate as endogenous source of urinary oxalate is poor in HVs

Preclinical translation predicts a therapeutic clinical dose of 60 – 125 mg QD

CHK-336 First-in-Human SAD/ MAD Study

Primary & Secondary Objectives

Safety / Tolerability / Pharmacokinetics

Exploratory Endpoints: urinary ¹³C₂-oxalate

- (1) To evaluate hepatic target engagement of CHK-336 early in the HV (FIH) studies
- (2) To guide starting & target dose for future patient proof-of-concept studies

Objective: Establish exposure-response relationship as Proof of Mechanism in the FIH - HV study

Target Engagement: ¹³C₂ Tracer Dosing for SAD and MAD

60° ERA CONGRESS MILAN & VIRTUAL JUNE 15-18, 2023

Tracking Conversion of ${}^{13}C_2$ -glycolate into ${}^{13}C_2$ -oxalate

Methods considerations:

Timed urine collections (0-24hr) on each tracer day

Controlled oxalate diet (< 50 mg oxalate/day)

Adequate sample pH adjustment (pH <1)

Validated GC/MS assays (Total Ox, ¹³C-enrichment)

SAD

MAD

¹³C₂-glycolate tracer was incorporated into the FIH Study along with careful control of dietary oxalate, timed urine collections, validated assays for reliable target engagement

CHK336-01 Safety Data

Generally well-tolerated

- Single doses up to 500 mg and multiple doses (14 days) up to 60 mg QD
- No dose related trends in AEs, vital signs or EKG findings
- Most common TEAE: headache in 6 subjects receiving CHK-336 (8.8%) and no placebo subjects; no dose-related trend

One SAE

- Anaphylaxis (related) in a MAD subject who received one 125 mg dose CHK-336 on Day 1
- Rapid onset (1 hr post-dose); resolved rapidly after antihistamine treatment; did
 NOT require epinephrine administration
- Elevated tryptase level diagnostic of anaphylaxis
 - 4.1 μg/L at baseline vs 13.3 μg/L at time of event
- This SAE resulted in voluntary study pause for further investigation

CHK336-01 PK Summary

- Dose proportional increases in exposure, t_{1/2} ~18hr consistent with QD dosing
- Urinary excretion of CHK-336 is negligible
- Exposures decrease with high-fat meal (50% ↓ in C_{max}, 30% ↓ AUC_{0-24h})
- Exposures as predicted with adequate safety margins to nonclinical tox NOAEL at 500 mg SAD

- No exposure accumulation with repeat dosing
- Exposures were as predicted at 30 and 60 mg x 14 days

Proof of Mechanism Achieved in HVs for CHK-336

- ¹³C₂-glycolate tracer used successfully to demonstrate hepatic LDH inhibition in HVs
- Of the ¹³C₂-oxalate recovered in urine, the majority was excreted in the first 8hr after tracer administration
- Dose dependent decrease of urinary ¹³C₂oxalate
- Exposure-response relationship demonstrated complete hepatic LDH inhibition in HVs
- Based on unbound plasma concentration, hepatic LDH IC_{90} achieved at 60-125mg, as predicted

In Conclusion

Safety

- CHK-336 was generally well-tolerated with single doses up to 500 mg and multiple doses up to 60 mg (14days)
- One SAE (anaphylaxis) in a subject receiving CHK-336 resulted in study pause

CHK-336 PK

- PK was well characterized (moderate variability, dose proportional exposures)
- Plasma t_{1/2} consistent with QD dosing
- No exposure accumulation following repeat dosing

CHK-336 PD

- Successfully implementation of novel use of ¹³C₂-glycolate tracer in a healthy volunteer study
- Established proof of mechanism of CHK-336 as a small molecule, orally administered, LDH inhibitor
- Single dose of 60 125 mg resulted in maximum hepatic LDH inhibition

- Jenis Bhavsar (Clin Ops)
- Marc-Olivier Boily (DMPK)
- Alex Caron (Pharmacology)
- Jennifer Cox (Biology)
- Jim Ding (Med Chem)
- Russell Eyre (Toxicology)
- Erin Freeman (Biomarkers)
- Samuel Gaudreault (Pharmacology)
- Donette Goldsmith (CMC Supply)
- Chandra Garapati (CMC Formulation)

- Matt Laughlin (Data Management)
- David Powell (Med Chem)
- Jayakumar Surendradoss (DMPK)
- Xiaowei Teng (DMPK)
- Stephanie Turner (Regulatory)
- Jessica Vedder (Clin Ops)
- Daniel Watson (CMC)
- Joyce Wu (Biology)
- Libo Yang (CMC)
- Chris Young (Statistical Programming)
- Leon Zhang (CMC)

John Knight, PhD Sonia Fargue, PhD

Harvey Wong, PhD

David Wagner, PhD

