Disclosures

Employer: Chinook Therapeutics
Ownership Interest: BMS
Consultancy: Chinook Therapeutics;
Research Funding: Nothing to disclose.
Honoraria: Nothing to disclose.
Patents or Royalties: Nothing to disclose.
Advisory or Leadership Role: Nothing to disclose.
Speakers Bureau: Nothing to disclose.
Other Interests or Relationships: Nothing to disclose.
Disclosure Updated Date: 05/16/2023
Integrated multi-omics in animal and observational human datasets provides insights into potential molecular mechanisms and biomarkers for atrasentan

N. Eric Olson1, Tobias Bohnenpoll2, Seamus Ragan1, I-Ju Lo2, Shawn S. Badal1, Jennifer Cox1, Olivier Radresa2, Uwe Andag2, Andrew King1

1. Chinook Therapeutics Inc, Seattle, WA, United States.
2. Evotec International GmbH, Gottingen, Germany.
Identifying, characterizing and validating an atrasentan response signature in animal models

Insights into atrasentan’s mechanism of action

Goal: identify gene signature and non-invasive biomarkers to differentiate MOAs in IgAN pathogenesis

Atrasentan Blocks Central Drivers of IgAN Pathogenesis

Approach: Apply translational cellular & in vivo models to investigate potential impact of atrasentan on key mechanisms of IgAN pathogenesis

ETA receptor activation drives proteinuria, mesangial cell activation & kidney inflammation & fibrosis, all hallmarks of IgAN
An atrasentan response signature derived from preclinical models

- A cluster of cells corresponding to failed repair proximal tubules (FR-PTEC) was highly expanded in the gddy mice compared to naïve mice.
- FR-PTEC showed the largest response to atrasentan as measured by number of differentially expressed genes.
- A 31 gene signature (Atra_31) was derived from the genes that were increased in gddy and decreased by atrasentan in the FR-PTEC cells.
- The signature score was also found to be decreased by atrasentan in the anti-Thy1.1 model of Mesangio-proliferative Glomerulonephritis.

~150,000 nuclei were isolated and sequenced from naïve, gddy and gddy + atrasentan mice.

FR PTEC are a source of chemokines and cytokines for immune cells and fibroblasts:

Putative relationships for key FR PTEC ligands and corresponding receptors on potential target cell types:
- Pro-inflammatory and profibrotic effects on fibroblasts may be mediated through Tnf and Tgfb2 signaling from FR PTEC.
- FR PTEC may play a key role in recruitment of immune cells through their expression of Ccl2.
Conduct an analysis of patient-matched kidney biopsies and biofluids from the NURTuRE cohort with the aim to identify non-invasive biomarkers associated with the atrasentan response signature score.

Project Aims:

NURTuRE Disease Cohort Data Availability

<table>
<thead>
<tr>
<th>Data type</th>
<th>Source</th>
<th>n</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clinical data</td>
<td>UK Renal Registry</td>
<td>3518</td>
<td></td>
</tr>
<tr>
<td>SNP array</td>
<td>Blood</td>
<td>3468</td>
<td></td>
</tr>
<tr>
<td>Whole Exome Sequencing</td>
<td>Blood</td>
<td>3122</td>
<td></td>
</tr>
<tr>
<td>RNA-Seq</td>
<td>Blood</td>
<td>4111</td>
<td></td>
</tr>
<tr>
<td>RNA-Seq</td>
<td>Biopsy</td>
<td>332</td>
<td></td>
</tr>
<tr>
<td>Olink Proteomics</td>
<td>Serum</td>
<td>252</td>
<td></td>
</tr>
<tr>
<td>Somascan Proteomics</td>
<td>Urine</td>
<td>57</td>
<td></td>
</tr>
</tbody>
</table>

- There is substantial overlap for many of the data types available for the NURTuRE disease cohort.
- 67 subjects with serum proteomics and biopsy rnaseq and 22 subjects with both urine proteomics and biopsy RNAseq were used for analysis.

https://www.nurturebiobank.org
Biomarker discovery strategy in the NURTuRE cohort

1. Signature score is correlated with eGFR and IFTA

\[r = -0.64, \ p < 2.2 \times 10^{-16} \]

Urine (Somascan)

Kruskal-Wallis \(p < 0.0001 \)

Serum (Olink)

\[r = 0.001, \ p = 0.93 \]

2. Correlation of biofluid proteins with patient biopsy score

174/2273 total urine proteins significantly correlated with patient biopsy rank

12/174 urine proteins correlated with patient biopsy rank are also significantly correlated with biopsy mRNA

3. Correlation of biofluid proteins with patient biopsy mRNA expression

173/2666 total serum proteins significantly correlated with patient biopsy rank

39/173 serum proteins correlated with patient biopsy rank are also significantly correlated with biopsy mRNA
Serum proteins are enriched for proteins expressed by failed repair tubules

A) Urine Proteins – enrichment for kidney cell type markers

B) Serum Proteins – enrichment for kidney cell type markers

- Serum showed an enrichment for FR proteins compared to urine
- Including biopsy correlation reduced enrichment for liver associated proteins
- FR expressed protein identified in urine
 - 26 correlated with biopsy score
 - 1 also correlated with biopsy gene expression
- FR expressed proteins identified in serum
 - 42 correlated with biopsy score
 - 19 also correlated with biopsy gene expression

Cell type Enrichment Analysis

Cell type genesets for 17 cell types derived from scRNA-seq data (GSE171314)

Significant genes for each cell type from FindAllMarkers (padj < 0.05)

Liver specific gene set derived from Human Protein Atlas RNA data (enriched in only liver)
Summary and future plans

Key observations
- A gene signature associated with atrasentan response in failed repair cells was identified in the gddY mouse model of IgAN
- Proteins associated with the gene signature score in patient biopsies were identified in urine and serum samples
- A subset of proteins that were also correlated with gene expression in the biopsies were identified and were enriched for proteins associated with the tubules
- Serum proteins had a stronger enrichment for tubular proteins than urine

Future steps
- Assess relationship between candidate proteins and signature score in a larger set of subjects for the NURTuRE cohort
- Assess effects of atrasentan treatment on proteins levels in urine and serum in subjects from the AFFINITY trial
 - Are signature-associated proteins reduced by atrasentan treatment?

Goals
- To identify non-invasive biomarkers associated with specific cellular responses that will enable precision treatment in CKD
Thank You!

To all members of the Chinook-Evotec Strategic Partnership...

... and all contributors of the NURTuRE Consortium!

Elaine Davies, Director at Kidney Research UK

Prof. Moin Saleem
University of Bristol

Prof. Maarten Taal
University of Nottingham