Preclinical efficacy of CHK-336: A First-in-Class, Liver-Targeted, Small Molecule Inhibitor of Lactate Dehydrogenase for the Treatment of Primary Hyperoxalurias

Jennifer Cox,1 Marc-Olivier Boly,1 Alex Carson,1 Oliver Chong,1 Jim Ding,2 Samuel Gaudreault,1 Robert Gomez,1 John Knight,6 Jay Kuo,2 Jeff Lester,1 Xingsheng Li,2 Jaysheng Li,7 W Todd Lowther,8 Renata Oballa,9 David Powell,1 Hannah Sandford-Crane,1 Tao Sheng,5 Jayakumar Surendradas,1 Vincent Tong,1 Joyce Wu,1 Andrew King1

Background

- Primary hyperoxalurias (PH): 1-3 are a group of autosomal recessive disorders that result in excess hepatic oxalate production. Patients with PH exhibit frequent kidney stone formation, progressive CKD and in its most severe form, PH1 can lead to ESKD at a young age. No oral small molecule agents are currently available.
- Lactate dehydrogenase A (LDHA) catalyzes the final and only committed step in hepatic oxalate synthesis and therefore represents a potential therapeutic target to treat all forms of PH and other disorders caused by oxalate overproduction.

Methods and Materials

- CHK-336 was evaluated in biochemical and cellular LDHA activity assays, a 13C-glycolate stable isotope tracer pharmacodynamic model, a novel PH1 mouse model generated by Apat deletion, and a Grhpr knockout PH2 mouse model. Oxalate excretion was characterized in ZDF-1 rats from 13-21 weeks of age and hepatic gene expression was analyzed.

Results

A) CHK-336 is a potent LDHA inhibitor in enzyme and hepatocyte assays across multiple species

<table>
<thead>
<tr>
<th>Enzyme</th>
<th>CHK-336 IC50 (nM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mouse LDHA</td>
<td>0.3 nM</td>
</tr>
<tr>
<td>Mouse Fresh Hepatocytes</td>
<td>30 nM</td>
</tr>
<tr>
<td>Mouse Cryopreserved Hepatocytes</td>
<td>80 nM</td>
</tr>
<tr>
<td>Hepatocyte</td>
<td>120 nM</td>
</tr>
<tr>
<td>Monkey Cryopreserved Hepatocytes</td>
<td>121 nM</td>
</tr>
</tbody>
</table>

- CHK-336 demonstrates potent inhibition of LDHA in enzyme assays (IC50 = 0.2-0.3 nM) and primary hepatocyte assays across multiple species (IC50 = 52-165 nM)
- CHK-336 also demonstrates tight LDHA binding with a very slow off-rate (hours-days)

B) Liver-targeted tissue distribution of CHK-336 and pharmacodynamic effect on the conversion of 13C2-glycolate into 13C2-oxalate

- CHK-336 exhibits a liver targeted tissue distribution profile in mice, rats and monkey with high liver concentrations and low extrahepatic tissue exposures
- Liver-targeted profile driven by CAVMT-mediated uptake results in high liver/plasma unbound ratios of 180-fold (rat) to 450-fold (monkey)
- Since LDHA catalyzes the final step of oxalate production from glycolate and a 13C2-glycolate stable isotope tracer was used to assess CHK-336 target engagement by measuring urinary excretion of 13C2-oxalate in Sprague Dawley rats
- Human PK predictions suggest CHK-336 has the potential to be a low, once-daily oral dose therapeutic in humans

C) CHK-336 produced significant and dose-dependent reductions in urinary oxalate in a PH1 mouse model

- CHK-336 was dosed orally, once-daily for 7 days in male Agx KO mice and urinary oxalate concentrations were compared to a vehicle control group
- Low, oral, once-daily doses of CHK-336 significantly reduced urinary oxalate; majority of treated mice reached the normal range observed in wild-type mice
- CHK-336 had a more rapid onset of action and comparable magnitude of urinary oxalate reduction compared to a GO-targeting siRNA
- GO-3RNA was administered on day 0; Doses of 1, 3, and 6 mg/kg caused 56%, 75%, and 78% knockdown, respectively

D) CHK-336 significantly reduced urinary oxalate excretion in a genetic mouse model of PH2

- CHK-336 was dosed orally, once-daily for 7 days in male Grhpr KO mice and urinary oxalate concentrations were compared to a vehicle group
- CHK-336 reduced urinary excretion of oxalate; the 3 mg/kg oral dose caused 61% reduction

E) Obese, hypertensive, and diabetic ZDF-1 rats have elevated urinary oxalate excretion and dysregulated expression of oxalate metabolism genes

- Increased urinary oxalate and altered hepatic expression of genes involved in oxalate metabolism was observed in ZDF-1 rats compared to Sprague Dawley controls
- Data supports potential therapeutic benefit of CHK-336 in non-genetic oxalate nephropathies associated with increased endogenous production

Conclusions

- CHK-336 is a potent LDHA inhibitor, with liver-targeted tissue distribution, that is efficacious in PH1 and PH2 mouse models of primary hyperoxaluria and has potential benefit in non-genetic hyperoxalurias caused by oxalate overproduction.
- The human safety and pharmacokinetic profiles of CHK-336 are currently under investigation in a healthy volunteer SAD/MAD study (NCT05367661).
- Target engagement will be assessed in humans using a novel stable isotope glycolate tracer approach (depicted below).

Pre-Treatment Glycolate Tracer

Post-Treatment Glycolate Tracer

CHK-336 is a first-in-class oral LDHA inhibitor with the potential to treat all subtypes of primary hyperoxaluria as well as other disorders arising from oxalate overproduction

References


*CHK-336 is an investigational drug that has not been approved by regulatory authorities. Efficacy and safety have not been established. There is no guarantee that it will become commercially available for the use(s) under investigation.