Pharmacodynamic and Clinical Responses to BION-1301 in Patients with IgA Nephropathy: Initial Results of a Phase 1/2 Trial

Jonathan Barratt,1 Billy Hour,2 Brian Schwartz,3 Bess Sorensen,3 Suzanne Roy,3 Colleen Stromatt,3 Margaret MacDonald,3 Aaron Endsley,4 Jeannette Lo,3 Alan Glicklich,3 Andrew King3

1University of Leicester, Leicester, UK
2Amicis Research Center, Northridge, CA, USA
3Chinook Therapeutics, Seattle, WA, USA
4Certara, Princeton, NJ, USA
Disclosures for Presenting Author

• Current Employer: University of Leicester
• Consultancy: Chinook, EMD Serono, Omeros, Calliditas, Novartis, Retrophin, Visterra, Alnylam, Dimerix, George Clinical, and Astellas
• Research Funding: Novartis, GlaxoSmithKline, Calliditas, Visterra, Chinook, and Retrophin
• Honoraria: AstraZeneca
• Scientific Advisor or Membership: Editorial Board of Kidney International, Clinical Journal of the American Society of Nephrology, and Clinical Science
Mechanism of APRIL and BION-1301 in IgA Nephropathy

Multi-hit pathogenesis of IgAN, an immune-mediated primary glomerular disease

1. Excess production of galactose-deficient IgA1 (Gd-IgA1) by IgA-secreting plasma cells is considered the initiating pathogenic event (Hit 1).
2. Immune recognition by anti-Gd-IgA1 autoantibodies (Hit 2) results in the formation of nephritogenic immune complexes (Hit 3) that cause glomerular injury following mesangial deposition (Hit 4).

A PRoliferation Inducing Ligand (APRIL) is a TNF*-family cytokine involved in B-cell signaling via TACI and BCMA receptor activation

1. Drives IgA class-switching and survival of IgA-secreting plasma cells.
2. Stimulates Gd-IgA1 secretion.
3. Higher APRIL levels in IgAN patients is correlated with higher Gd-IgA1 and proteinuria and lower eGFR.
4. APRIL gene variants confer increased risk of IgAN.

BION-1301, a novel humanized monoclonal antibody that binds and blocks APRIL

- Potentially disease-modifying mechanism to deplete Gd-IgA1 (Hit 1) and prevent pathogenic immune complex formation (Hit 3).

*TNF: tumor necrosis factor

IgAN Phase 1/2 Study Design

Objectives
• Safety, tolerability, PK, biomarker effects and preliminary proteinuria
 – Proof of mechanism
 – Proof of concept
• Explore dose/schedule, intravenous (IV) and subcutaneous (SC) administration

Key Eligibility Criteria
• Biopsy-proven IgAN within past 10 years
• Urine protein ≥ 0.5 g/24h OR UPCR ≥ 0.5 g/g
• eGFR over 45 mL/min per 1.73 m²*
• Stable on an optimized dose of RASi for ≥ 3 months prior to screening (or intolerant to RASi)

Cohort 1
450 mg Q2W IV, up to 52 wks
n=10

Cohort 2
600 mg Q2W SC, up to 52 wks
n=10

Optional Additional Cohorts
SC Dose/Schedule TBD, up to 52 wks

Visit INFO32 for further details about the Phase 1/2 trial

RASi, renin-angiotensin system inhibitors; eGFR, estimated glomerular filtration rate; PK, pharmacokinetics; Q2W, every 2 weeks; UPCR, urine protein/creatinine ratio.

*Or 30 to 45 mL/min/1.73m² if kidney biopsy performed within 2 years prior to Day 1 does not provide evidence of glomerular fibrosis, eGFR determined by CKD-EPI.
Demographics & Baseline Characteristics

<table>
<thead>
<tr>
<th>Demographics (n=10)</th>
<th>Baseline Characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, years</td>
<td>Renin-angiotensin system inhibitor use</td>
</tr>
<tr>
<td>Median (min, max)</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>Time from biopsy, years</td>
</tr>
<tr>
<td></td>
<td>2.0 (0.2, 3.4)</td>
</tr>
<tr>
<td>Sex, male</td>
<td>Blood pressure (mmHg)</td>
</tr>
<tr>
<td>n (%)</td>
<td>Systolic - Median (min, max)</td>
</tr>
<tr>
<td></td>
<td>127 (113, 133)</td>
</tr>
<tr>
<td>9 (90)</td>
<td>Diastolic - Median (min, max)</td>
</tr>
<tr>
<td></td>
<td>83 (69, 88)</td>
</tr>
<tr>
<td>Race, white</td>
<td>eGFR (mL/min/1.73 m²)</td>
</tr>
<tr>
<td>n (%)</td>
<td>69 (30, 122)</td>
</tr>
<tr>
<td>10 (100)</td>
<td>24-hour urine protein excretion (g/day)</td>
</tr>
<tr>
<td>Ethnicity, Hispanic</td>
<td>Median (min, max)</td>
</tr>
<tr>
<td>n (%)</td>
<td>1.22 (0.74, 6.47)</td>
</tr>
<tr>
<td>2 (20)</td>
<td>24-hour UPCR (g/g)</td>
</tr>
<tr>
<td>Country, US</td>
<td>Median (min, max)</td>
</tr>
<tr>
<td>n (%)</td>
<td>0.64 (0.41, 4.55)</td>
</tr>
<tr>
<td>10 (100)</td>
<td></td>
</tr>
</tbody>
</table>

* eGFR by CKD-EPI, Chronic Kidney Disease Epidemiology Collaboration
Safety and Tolerability

• To date, BION-1301 has been well-tolerated in IgAN patients (n=10)

<table>
<thead>
<tr>
<th>AE Category</th>
<th>n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subjects with any TEAE</td>
<td>5 (50)</td>
</tr>
<tr>
<td>Any TEAE occurring in N>1 subjects</td>
<td>0 (0)</td>
</tr>
<tr>
<td>Treatment-related AE</td>
<td>0 (0)</td>
</tr>
<tr>
<td>AE leading to discontinuation</td>
<td>0 (0)</td>
</tr>
<tr>
<td>SAE</td>
<td>0 (0)</td>
</tr>
<tr>
<td>Infusion-related reactions</td>
<td>0 (0)</td>
</tr>
</tbody>
</table>

• Data cutoff: October 6, 2021
 – IgG concentrations remained above study-defined threshold in all patients
 – No notable changes in frequency of circulating naïve and memory B-cell subsets
 – 8/10 patients remain on treatment, with time on treatment ranging from <1 month to >14 months

AE, adverse event; SAE, serious adverse event; TEAE, treatment-emergent adverse event.
Changes in Free APRIL Concentrations

- Rapid and durable reductions in free APRIL confirm effective target neutralization sustained through 1 year.

- BION-1301 pharmacokinetics in patients with IgAN is consistent with previous experience in healthy volunteers.

- No anti-drug antibodies observed in patients with IgAN to date.

Serum Concentration of Free APRIL

- Pre-dose vs. post-dose concentrations over study days.

- Mean ± SEM for each time point is shown.

- Sample sizes (n) are indicated at each time point.
BION-1301 durably reduces IgA, IgM, and to a lesser extent, IgG in patients with IgAN.

BION-1301 produces sustained reductions in serum Gd-IgA1.

- The depletion of this pathogenic IgA isoform (Hit 1) in patients with IgAN demonstrates the potential disease-modifying mechanism of BION-1301.

IgG concentrations remained above the study-defined threshold in all patients, providing a pharmacodynamic window to deplete IgA while minimizing impact on IgG.
Effects on Proteinuria

- Median baseline 24-h urine protein excretion*: 1.22 g/day (range: 0.74 - 6.47 g/day)
- BION-1301 treatment results in clinically meaningful proteinuria reductions within 3 months in patients across a range of disease severities

![Graph showing % Reduction in UPCR](image)

Study Day

<table>
<thead>
<tr>
<th>Study Day</th>
<th>% Reduction (Geomean ± SEM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>29</td>
<td>n=8</td>
</tr>
<tr>
<td>99</td>
<td>n=6</td>
</tr>
<tr>
<td>183</td>
<td>n=4</td>
</tr>
<tr>
<td>351</td>
<td>n=2</td>
</tr>
</tbody>
</table>
Conclusions

Interim BION-1301 IgAN patient data:

- Well-tolerated, with no early terminations due to AEs and no SAEs
- No anti-drug antibodies have been observed
- Rapid and sustained free APRIL reductions
- Durable reductions in Gd-IgA1, IgA and IgM, with smaller reductions in IgG
- Clinically meaningful reductions in proteinuria (24-hour UPCR) within 3 months

Next Steps:

- Complete enrollment of patients with IgAN in Cohort 2 utilizing subcutaneous injection of BION-1301

Acknowledgments:

Chinook Therapeutics would like to thank Karen Molyneux, Victoria Cotton, and Nadia Nawaz of University of Leicester for their contributions to the Gd-IgA1 data for this study.